Scalable Thompson Sampling for Non-Conjugate Models

James McInerney

Netflix jmcinerney@netflix.com

Bayesian Causal Inference for Real World Interactive Systems

August 15, 2021

Given dataset \mathcal{D} , likelihood $p(\mathcal{D} \mid \theta)$, and prior $p(\theta)$ with model variables θ .

Iterate over the following two steps:

- **(**) Sample model variables from posterior $\theta^{(s)} \sim p(\theta \mid D)$
- ② Pick action $a^* = \arg_a \max \mathbb{E}[\operatorname{reward}(a) \mid \theta^{(s)}]$

Given dataset \mathcal{D} , likelihood $p(\mathcal{D} \mid \theta)$, and prior $p(\theta)$ with model variables θ .

Iterate over the following two steps:

- **(**) Sample model variables from posterior $\theta^{(s)} \sim p(\theta \mid D)$
- ② Pick action $a^* = \arg_a \max \mathbb{E}[\operatorname{reward}(a) \mid \theta^{(s)}]$

Unless $p(\mathcal{D} \mid \theta)$ and $p(\theta)$ take the same form (conjugate), the posterior calculation is computationally prohibitive for many models.

Exploration for Non-Conjugate Models

- Complex models (e.g. deep neural nets, gradient boosted decision trees) present challenges for quantifying uncertainty.
- Hard to apply existing exploration-exploitation schemes (e.g. UCB, Thompson sampling) off the shelf.

< □ > < □ > < □ > < □ > < □ > < □ >

On Avoiding Overfitting

overfitting

э

On Avoiding Overfitting

• Amazing literature on how to defend against overfitting.

On Avoiding Overfitting

- Amazing literature on how to defend against overfitting.
- Is overfitting ever useful?

• Let $f : \mathcal{X} \to \mathbb{R}$ be a regularized model and $g : \mathcal{X} \to \mathbb{R}$ be an unregularized model that maximally overfits the training data.

- Let f : X → ℝ be a regularized model and g : X → ℝ be an unregularized model that maximally overfits the training data.
- Formally, if h(x) is the unknown true function, then assume: $f(x) = h(x) + \beta$, for any $\beta \perp \ell$ $g(x) = h(x) + \epsilon$, where $\mathbb{E}[\epsilon] = 0$

where $\mathbb{E}[\cdot]$ is with respect to the true population distribution.

- Let f : X → ℝ be a regularized model and g : X → ℝ be an unregularized model that maximally overfits the training data.
- Formally, if h(x) is the unknown true function, then assume:
 f(x) = h(x) + β, for any β ⊥⊥ ε g(x) = h(x) + ε, where ℝ[ε] = 0 where ℝ[·] is with respect to the true population distribution.
- We introduce the concept of the **residual overfit** defined as: residual overfit = |f(x) - g(x)|.

- Let f : X → ℝ be a regularized model and g : X → ℝ be an unregularized model that maximally overfits the training data.
- Formally, if h(x) is the unknown true function, then assume:
 f(x) = h(x) + β, for any β ⊥⊥ ε g(x) = h(x) + ε, where E[ε] = 0 where E[·] is with respect to the true population distribution.
- We introduce the concept of the **residual overfit** defined as: residual overfit = |f(x) - g(x)|.
- Claim: the squared residual overfit is an upper bound on the error of f(x) with respect to the true function h(x).

Train f and g on two distinct random splits of datasets drawn from the true population distribution F. Calculate residual overfit on query point x,

$$\mathbb{E}[(f(x) - g(x))^2]$$

$$= \mathbb{E}[(h(x) + \beta - h(x) - \epsilon)^2]$$

$$= \mathbb{E}[(\beta - \epsilon)^2]$$

$$= \mathbb{E}[\beta^2 - 2\beta\epsilon + \epsilon^2]$$

$$= \mathbb{E}[\beta^2] + \mathbb{E}[\epsilon^2]$$

$$= \mathrm{MSE}[f(x)] + \mathrm{Var}[g(x)]$$

Train f and g on two distinct random splits of datasets drawn from the true population distribution F. Calculate residual overfit on query point x,

$$\mathbb{E}[(f(x) - g(x))^2]$$

$$= \mathbb{E}[(h(x) + \beta - h(x) - \epsilon)^2]$$

$$= \mathbb{E}[(\beta - \epsilon)^2]$$

$$= \mathbb{E}[\beta^2 - 2\beta\epsilon + \epsilon^2]$$

$$= \mathbb{E}[\beta^2] + \mathbb{E}[\epsilon^2]$$

$$= \mathrm{MSE}[f(x)] + \mathrm{Var}[g(x)]$$

Reminder: argument holds in expectation and needs $\beta \perp \epsilon$.

Population averaged maximum a posteriori objective:

$$egin{aligned} \mathcal{L}_{ heta} &= \mathbb{E}_{F}[\log p(\mathcal{D} \mid heta)] + \log p(heta \mid lpha) \ heta^{*} &= rg_{ heta} \max \mathcal{L}_{ heta} \end{aligned}$$

Population averaged maximum a posteriori objective:

$$\mathcal{L}_{\theta} = \mathbb{E}_{F}[\log p(\mathcal{D} \mid \theta)] + \log p(\theta \mid \alpha) \\ \theta^{*} = \arg_{\theta} \max \mathcal{L}_{\theta}$$

Apply implicit function theorem:

$$\frac{\mathrm{d}\theta^*}{\mathrm{d}\alpha} = -\left(\mathbb{E}_{\mathsf{F}}\left[\frac{\partial^2}{\partial\theta_i\partial\theta_j}\log p(\mathcal{D}\mid\theta)\right]\right)^{-1}\frac{\partial^2}{\partial\theta\partial\alpha}\log p(\theta\mid\alpha) \qquad (1)$$

Population averaged maximum a posteriori objective:

$$\mathcal{L}_{\theta} = \mathbb{E}_{F}[\log p(\mathcal{D} \mid \theta)] + \log p(\theta \mid \alpha) \\ \theta^{*} = \arg_{\theta} \max \mathcal{L}_{\theta}$$

Apply implicit function theorem:

$$\frac{\mathrm{d}\theta^*}{\mathrm{d}\alpha} = -\left(\mathbb{E}_F\left[\frac{\partial^2}{\partial\theta_i\partial\theta_j}\log p(\mathcal{D}\mid\theta)\right]\right)^{-1}\frac{\partial^2}{\partial\theta\partial\alpha}\log p(\theta\mid\alpha) \qquad (1)$$

Residual overfit is a first-order Taylor-based approximation of Eq. 1.

Synthetic Example

- True reward is $h(x) = x(1 2x^2)$.
- Continuous action space with two local optima in range [-1, 1].

Synthetic Example

- Model architecture: 3-layer neural net each with 500 ReLu nodes.
- f: train for 20 epochs (early stopping).
- g: train for 1000 epochs (overfit).

10/18

Synthetic Example

- Inner blue shaded region: residual overfit.
- Outer green shaded region: 2.58 times residual overfit (99% confidence interval).

August 15, 2021 <u>11 / 18</u>

Why Not Just Fit to RMSE?

- Observed RMSE combines epistemic with aleatoric uncertainty.
- Example: generated 100 data points at input points $x \in \{-1, -\frac{1}{2}, 0, \frac{1}{2}, 1\}.$

Figure: Fit model to observed RMSE

Figure: Residual overfit

regularization

dropout

model selection

overfitting

cold start

regularization

dropout mod

model selection overfitting

cold start

Can we use residual overfit for exploration?

Can we use residual overfit for exploration?

UCB: reward(x_a) = $f(x_a) + \alpha |f(x_a) - g(x_a)|$, for hyperparameter α .

Can we use residual overfit for exploration?

UCB: reward(x_a) = $f(x_a) + \alpha |f(x_a) - g(x_a)|$, for hyperparameter α .

Thompson Sampling: reward(x_a) ~ $\mathcal{N}(f(x_a), (f(x_a) - g(x_a))^2)$

Can we use residual overfit for exploration?

UCB: reward(x_a) = $f(x_a) + \alpha |f(x_a) - g(x_a)|$, for hyperparameter α .

Thompson Sampling: reward(x_a) ~ $\mathcal{N}(f(x_a), (f(x_a) - g(x_a))^2)$

Exponential family moment matching for different observation models. E.g., for binary rewards, closed-form expression for the beta posterior.

Empirical Evaluation

• Base model: random forest classifier (RF).

Methods:

- Uniform random.
- Epsilon greedy, with $\epsilon = 0.1$.
- LinUCB, with $\alpha = 1.0$.
- Bootstrap Thompson sampling, with M = 20 bootstraps of the data.
- Rome-UCB & Rome-TS:
 - f: base model
 - g: a single decision tree
 - both f and g trained on the same data

Table: Average regret with 95% confidence interval over 10 replications. Top performing method for each dataset in bold.

Method	Covertype (7 classes)	Bach Chorales (65 classes)	MovieLens (3600 classes)
LinUCB	$\textbf{0.415} \pm \textbf{0.003}$	0.664 ± 0.007	0.967 ± 0.005
Epsilon Greedy	0.403 ± 0.005	0.711 ± 0.051	0.970 ± 0.000
Bootstrap-TS	0.390 ± 0.003	0.668 ± 0.028	0.971 ± 0.000
Rome-UCB	0.422 ± 0.004	0.718 ± 0.035	0.963 ± 0.005
Rome-TS	0.524 ± 0.004	0.657 ± 0.012	0.941 ± 0.006
Uniform Random	$\textbf{0.859} \pm \textbf{0.004}$	$\textbf{0.985} \pm \textbf{0.001}$	0.986 ± 0.001

Image: A matrix and a matrix

August 15, 2021 16 / 18

• • • • • • • • • •

MovieLens (Depleting Actions)

August 15, 2021 17 / 18

• Introduced *residual overfit* and argued for its value in approximating model uncertainty.

- Introduced *residual overfit* and argued for its value in approximating model uncertainty.
- Residual overfit method of exploration an "embarrassingly practical to implement" method for exploration (can be built in a day).

- Introduced *residual overfit* and argued for its value in approximating model uncertainty.
- Residual overfit method of exploration an "embarrassingly practical to implement" method for exploration (can be built in a day).
- Further work on theory and to study which overfitting work best.

- Introduced *residual overfit* and argued for its value in approximating model uncertainty.
- Residual overfit method of exploration an "embarrassingly practical to implement" method for exploration (can be built in a day).
- Further work on theory and to study which overfitting work best.
- Slides and further info at jamesmc.com/rome

- Introduced *residual overfit* and argued for its value in approximating model uncertainty.
- Residual overfit method of exploration an "embarrassingly practical to implement" method for exploration (can be built in a day).
- Further work on theory and to study which overfitting work best.
- Slides and further info at jamesmc.com/rome

Thanks!