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Thompson Sampling

Given dataset D, likelihood p(D | 6), and prior p(#) with model variables 6.

Iterate over the following two steps:

@ Sample model variables from posterior () ~ p(6 | D)
@ Pick action a* = arg, max E[reward(a) | 6(*)]
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Thompson Sampling

Given dataset D, likelihood p(D | 6), and prior p(#) with model variables 6.

Iterate over the following two steps:

@ Sample model variables from posterior () ~ p(6 | D)

@ Pick action a* = arg, max E[reward(a) | 6(*)]

Unless p(D | ) and p(0) take the same form (conjugate), the posterior
calculation is computationally prohibitive for many models.
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Exploration for Non-Conjugate Models

e Complex models (e.g. deep neural nets, gradient boosted decision
trees) present challenges for quantifying uncertainty.

@ Hard to apply existing exploration-exploitation schemes (e.g. UCB,
Thompson sampling) off the shelf.
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On Avoiding Overfitting

overfitting
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On Avoiding Overfitting

@ Amazing literature on how to defend against overfitting.
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On Avoiding Overfitting

@ Amazing literature on how to defend against overfitting.

@ Is overfitting ever useful?
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The Residual Overfit

o Let f: X — R be a regularized model and g : X — R be an
unregularized model that maximally overfits the training data.
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The Residual Overfit

o Let f: X — R be a regularized model and g : X — R be an
unregularized model that maximally overfits the training data.

e Formally, if h(x) is the unknown true function, then assume:

f(x) = h(x)+ 3, for any g 1l €
g(x) = h(x) + €, where E[¢] =0

where E[-] is with respect to the true population distribution.
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e Formally, if h(x) is the unknown true function, then assume:

f(x) = h(x)+ 3, for any g 1l €
g(x) = h(x) + €, where E[¢] =0

where E[-] is with respect to the true population distribution.

@ We introduce the concept of the residual overfit defined as:

residual overfit = |f(x) — g(x)].
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The Residual Overfit

o Let f : X — R be a regularized model and g : X — R be an
unregularized model that maximally overfits the training data.

e Formally, if h(x) is the unknown true function, then assume:

f(x) = h(x)+ 3, for any g 1l €
g(x) = h(x) + €, where E[¢] =0

where E[-] is with respect to the true population distribution.

@ We introduce the concept of the residual overfit defined as:

residual overfit = |f(x) — g(x)].

@ Claim: the squared residual overfit is an upper bound on the error of
f(x) with respect to the true function h(x).
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Residual Overfit Derivation # 1

Train f and g on two distinct random splits of datasets drawn from the
true population distribution F. Calculate residual overfit on query point x,

E[(f(x) — g(x))*]

= E[(h(x) + B — h(x) — €)*]
= E[(8 - ¢)?]

= E[3? — 20 + €]

= E[5%] + E[¢’]

= MSE|[f(x)] + Var[g(x)]
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Residual Overfit Derivation # 1

Train f and g on two distinct random splits of datasets drawn from the
true population distribution F. Calculate residual overfit on query point x,

E[(f(x) — g(x))*]

= E[(h(x) + B — h(x) — €)*]
= E[(8 - ¢)?]

= E[3? — 20 + €]

= E[5%] + E[¢’]

= MSE|[f(x)] + Var[g(x)]

Reminder: argument holds in expectation and needs 8 Il e.
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Residual Overfit Derivation #2

Population averaged maximum a posteriori objective:

Ly =Er[log p(D | 0)] + log p(6 | )
0% = argy max Ly

Q
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Residual Overfit Derivation #2

Population averaged maximum a posteriori objective:

Ly =Er[log p(D | 0)] + log p(6 | )
0% = argy max Ly

Apply implicit function theorem:

‘(f: = <E [89829 log p(D IO)D1 aea;a logp(6 | ) (1)

Q

James Mclnerney (Netflix) Scalable Thompson Sampling August 15, 2021 8/



Residual Overfit Derivation #2

Population averaged maximum a posteriori objective:

Ly =Er[log p(D | 0)] + log p(6 | )
0% = argy max Ly

Apply implicit function theorem:

‘(f: = <E [89829 log p(D IO)D1 aea;a logp(6 | ) (1)

Residual overfit is a first-order Taylor-based approximation of Eq. 1.
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Synthetic Example

o True reward is h(x) = x(1 — 2x?).

e Continuous action space with two local optima in range [-1, 1].
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Synthetic Example
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o dataforg @ Model architecture:
1.5 o data for f 3-layer neural net each
1.0 with 500 RelLu nodes.
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Synthetic Example
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Why Not Just Fit to RMSE?

@ Observed RMSE combines epistemic with aleatoric uncertainty.

@ Example: generated 100 data points at input points
xe{-1,-101 1}
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Figure: Fit model to observed RMSE Figure: Residual overfit
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Residual Overfit Method of Exploration (ROME)

regularization  dropout model selection overfitting cold start
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Residual Overfit Method of Exploration (ROME)

regularization  dropout model selection overfitting cold start
Can we use residual overfit for exploration?

UCB: reward(x;) = f(x3) + a|f(xs) — g(xa)|, for hyperparameter o.
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Residual Overfit Method of Exploration (ROME)

regularization  dropout model selection overfitting cold start

Can we use residual overfit for exploration?
UCB: reward(x;) = f(x3) + a|f(xs) — g(xa)|, for hyperparameter o.

Thompson Sampling:  reward(x,) ~ N(f(xa), (f(xa) — g(x2))?)
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Residual Overfit Method of Exploration (ROME)

regulaﬁzation dropout  model selection overfitting cold start

Can we use residual overfit for exploration?

UCB: reward(xa) = f(x3) + a|f(xa) — g(x3)|, for hyperparameter .
Thompson Sampling:  reward(x,) ~ N(f(xa), (f(xa) — g(x2))?)

Exponential family moment matching for different observation models.
E.g., for binary rewards, closed-form expression for the beta posterior.
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Empirical Evaluation

@ Base model: random forest classifier (RF).

Methods:

@ Uniform random.
Epsilon greedy, with ¢ = 0.1.
LinUCB, with o = 1.0.

Bootstrap Thompson sampling, with M = 20 bootstraps of the data.
RoME-UCB & ROME-TS:

o f: base model
e g: a single decision tree
e both f and g trained on the same data
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Table: Average regret with 95% confidence interval over 10 replications. Top
performing method for each dataset in bold.

Covertype Bach Chorales MovieLens
(7 classes) (65 classes) (3600 classes)

LinUCB  0.415 £ 0.003 0.664 £ 0.007 0.967 + 0.005

Epsilon Greedy  0.403 4 0.005 0.711 £0.051 0.970 £ 0.000
Bootstrap-TS  0.390 + 0.003  0.668 + 0.028 0.971 4 0.000
RoME-UCB  0.422 £ 0.004 0.718 £ 0.035 0.963 £+ 0.005
ROME-TS  0.524 £0.004 0.657 £ 0.012 0.941 + 0.006
Uniform Random  0.859 £ 0.004 0.985 £ 0.001 0.986 4 0.001

Method
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Bach Chorales
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MovieLens (Depleting Actions)
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Conclusions & Future Work

@ Introduced residual overfit and argued for its value in approximating
model uncertainty.
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model uncertainty.

@ Residual overfit method of exploration an “embarrassingly practical to
implement” method for exploration (can be built in a day).
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@ Introduced residual overfit and argued for its value in approximating
model uncertainty.

@ Residual overfit method of exploration an “embarrassingly practical to
implement” method for exploration (can be built in a day).

@ Further work on theory and to study which overfitting work best.
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Conclusions & Future Work

@ Introduced residual overfit and argued for its value in approximating
model uncertainty.

@ Residual overfit method of exploration an “embarrassingly practical to
implement” method for exploration (can be built in a day).

Further work on theory and to study which overfitting work best.

Slides and further info at jamesmc.com/rome
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Conclusions & Future Work

@ Introduced residual overfit and argued for its value in approximating
model uncertainty.

@ Residual overfit method of exploration an “embarrassingly practical to
implement” method for exploration (can be built in a day).

Further work on theory and to study which overfitting work best.

Slides and further info at jamesmc.com/rome

Thanks!

James Mclnerney (Netflix) Scalable Thompson Sampling August 15, 2021 18/18


jamesmc.com/rome

	Motivation
	Uncertainty

